Pygfit Users Cookbook

Anthony Gonzalez, Leonidas Moustakas, and Conor Mancone
Last updated: October 7, 2013

The Python Galaxy Fitter (PyGFit) is a code designed to yield matched photometry for multiresolution
data sets. In an era where quantitative morphological fitting is commonplace and automated, we have
designed PyGFit with the aim of providing fast, easy, and robust matched photometry for data sets
where quantitative morphologies have already been derived from the highest resolution imaging. The
code is described in detail in Mancone et al. (2013). This paper also discusses issues such as
morphological k-corrections of which the user should be aware. Here we aim to provide a cookbook
to guide users through the process from start to finish. In this example we assume that the quantitative
morphologies will be derived with Galapagos/GALFIT, which is currently the most commonly used
combination for automated quantitative morphologies. The PyGFit code is sufficiently general however
that it can handle any analytic parameterizations of galaxy structure through the inclusion of additional
modules beyond the current Sersic and point source models. We encourage users who either develop
or need additional structural models to contact us.

1. Getting Started
1.1 Python Setup

Obtaining the Code
The PyGFit source code can be found at www.baryons.org/pygfit. PyGFit was developed on python
2.6.2. The README file enclosed includes detailed installation instructions.

Software Requirements
Before installing PyGFit, the following python libraries and external software should first be installed on
the system.
Libraries:
scipy, numpy, matplotlib (scipy.org)
pyfits (http://www.stsci.edu/institute/software _hardware/pyfits)

External software:
SExtractor (www.astromatic.net/software/sextractor)

Users may wish to consider using the Scisoft distribution, which contains all of the required
libraries plus SExtractor (www.eso.org/sci/software/scisoft). A Mac version of the Scisoft

http://www.google.com/url?q=http%3A%2F%2Fwww.baryons.org%2Fpygfit&sa=D&sntz=1&usg=AFQjCNGqETRFUXJPuD9L1LeXHBatvLwwYw
http://www.google.com/url?q=http%3A%2F%2Fwww.stsci.edu%2Finstitute%2Fsoftware_hardware%2Fpyfits&sa=D&sntz=1&usg=AFQjCNF1wEFS10kUPXZUfwjaFDlFkX1h8w
http://www.google.com/url?q=http%3A%2F%2Fwww.astromatic.net%2Fsoftware%2Fsextractor&sa=D&sntz=1&usg=AFQjCNE3rLPbVIbTmJ7BRmN_uvAGh1zTcw
http://www.google.com/url?q=http%3A%2F%2Fwww.eso.org%2Fsci%2Fsoftware%2Fscisoft&sa=D&sntz=1&usg=AFQjCNHLUVf0nDPozLk8nnA1-yFquo-Yaw

distribution can also be found at scisoftosx.dyndns.org.

Installation

Once the code is downloaded, cd to the directory in which you wish to install pygfit and type:

> tar xzvf pygfit 1.0.tgz

Next, add this folder to your python path. For csh add the following line to your .cshrc file

setenv PYTHONPATH ‘/PATH_TO PYGFIT/’

Additionally, make sure that SExtractor execitable is in your path and if not add the following line:

setenv PATH ${PATH}:/PATH TO SEXTRACTOR:

1.2 PyGFit Inputs

To run PyGFit, the following inputs are required:

1. Catalog with Quantitative Catalog from High Resolution Image (ASCII or FITS format)
2. Low resolution image

3. PSF for low resolution image

4. RMS map for low resolution image

5. Configuration file

In the sections below we describe how to generate or prepare each of these inputs for PyGFIT. For
simplicity, we recommend setting up your files with a directory structure similar to the following:
OBJECT/

B/ 1/ z/ CHl/
where the files corresponding to each filter are contained directly within the appropriate subdirectory.

2. The High Resolution Catalog

The high resolution catalog defines the structural parameters of all objects identified in the
high-resolution image that PyGFIT can attempt to match and fit in the lower resolution image. By default
PyGFIT is set up to handle point sources and sersic profiles. Note that the astrometric calibration of the
high-resolution catalog does not need to precisely match that of the low resolution image, as PyGFIT
will calculate a global astrometric offset between the two. It is however important that there exists no net

rotation between the high-resolution catalog and the low resolution image.

There are several factors to keep in mind with the high resolution catalog:

1. Garbage In - Garbage Out. If the structural fits are poor in the high-resolution image, as evidenced
by either large chi-squared values or structural parameters driven to the boundaries of the permitted
range (such as n=8), then the matched photometry derived from PyGFIT will not be reliable.

2. Unresolvable blends. If two objects in the high-resolution catalog are separate by << the PSF in the
low-resolution image, PyGFIT will also not be able to derive robust photometry.

2.1 Starting with a Catalog

If you are starting with a previously generated catalog, then you will need to know the orientation of the
image relative to north and pixel scale, as this information is necessary to interpret position angles and
effective radii. The catalog can be in either FITS or ASCII format. The following section in the
configuration file directs the code to the proper columns for a FITS table, where the second column lists

the appropriate keywords in the table:

Column Layout of High Resolution Catalog

Specify column index (zero-indexed) of each data field in the high
resolution catalog

MODEL_ TYPE type # galaxy model type (sersic or point)
ID number # galaxy id

RA ra # ra

DEC dec # dec

MAG mag # magnitude

POINT MAG mag # magnitude column for point sources
RE re

BA ba

N n

PA pa

For an ASCII file, the second column would instead contain the column number
corresponding to each quantity. Note that the errors associated with each
quantity (eg. MAG ERR, RE ERR, BA ERR, N ERR, PA ERR) can also be included,
which is necessary if you wish to run simulations where the structural
parameters are permitted to change.

2.2 Starting by Running Galapagos

If you do not have a catalog for the high-resolution image in hand, then it will be necessary to generate
one yourself, and then follow the instructions above for editing the configuration file. We refer the user to
the Galapagos/GALFIT manuals for instructions on how to run these codes. On the web page we do
include example configuration, parameter, and setup files for galapagos for an F606 W image, as well as

a script, build psfs_acs.py that can be used to generate a suitable input PSF for galapagos (in the same
fashion as described below for PSF generation for PyGFIT).

3. The Low Resolution Image

The low resolution image from which you aim to extract photometry should ideally be free of major
artifacts that may be mistaken as objects. Masking these objects is fine as long as this masking is also
reflected in the RMS map.

4. Generating PSFs

The user may use any means they prefer to generate a PSF for the low resolution image. From
experience, we have found that empirical PSFs are greatly superior to synthetic PSFs. The approach
that we take is to combine a number of relatively bright, unsaturated stars within the image to create a
median PSF. Posted on the web page is an example code, build psfs pygfit.py, that can be used for

this purpose. With this code the user first identifies a set of input stars in ds9, saving a region file (xy
format, ra/dec in degrees) to the file “stars” in the same directory as the image. build psfs_pygfit.py can
then be run to generate a PSF. This code also generates a diagnostic plot showing the normalized radial
profiles of each star so that the user can remove any deviant objects.

5. RMS Images

An RMS image associated with the low resolution image is required so that the code appropriately
accounts for the pixel-to-pixel noise variations. This image should include both the sky noise and the
Poisson noise associated with the objects in the image.

5.1 Starting with pre-existing RMS images
In the ideal case where you already have an existing RMS image, then there is no additional work
necessary. You simply need to point to it in the configuration file (see below).

5.2 Making your own RMS image

It is sometimes the case that a proper RMS image generated during the image processing is unavailable.
In these cases it is possible to reconstruct an approximate RMS image directly from the data and an
exposure map. For images where there has been no sky subtraction, the RMS will simply be
sqrt(data*exposure map/Gain). For images where the sky has been subtracted, one can compute the

sky RMS in blank regions of the image and use this information to add back in an approximate sky as
part of this procedure, such that the RMS = sqrt((sky+ (data*exposure map))/Gain).

6. The PyGFIT Configuration File

The command:

> pygfit.py --config

will generate the example configuration file shown below. The parameters can be broken down into
eight subsets:

1. Detection Parameters for Source Extractor. These should be self-explanatory if you are familiar with

Source Extractor. If not, the Source Extractor documentation provides a detailed explanation

2. High Resolution Catalog & Image Properties. This set of parameters defines the catalog name, and
the image orientation and plate scale. The latter two are needed to correctly interpret position angles
and effective radii for Sersic models.

3. High Resolution Catalog Format. These parameters specify the column numbers (for ASCII catalogs)
or column names (for FITS catalogs) corresponding to each parameter. For simulations in which the
model parameters are to be varied, one should also include the columns corresponding to the model
parameter errors.

4. Low Resolution Image Properties. Here is where one specifies the science and rms images, the PSF,

the photometric zeropoint.
5. Fitting Parameters. The parameters in this section specify the details of the object fitting. The items

which the user should adjust to be appropriate for a given data set are the following:

MIN MAG,MAX MAG - These define the magnitude range of objects detected by Source
Extractor in the low resolution image that the user wishes to fit with PyGFit.

GLOBAL MAX SHIFT - This is the maximum astrometric shift allowed between the high and
low resolution data sets.

ALIGN MIN MAG, ALIGN MAX MAG - These define the magnitude range over which to calculate
the global astrometric shift.

N ALIGN - This parameter defines the maximum number of objects to use in calculating the
global shift.

MAX SHIFT - This defines the maximum positional shift permitted for an individual object

(after application of the global shift) during the fitting process.

The remaining parameters in this section are normally best left to the default values. We do note
however that the code is capable of running on GPUs. If you wish to do so to shorten the run time,
simply change GPU to True and set the appropriate number of threads per block in

GPU NTHREADS.

6.Output Settings. Here the user can select which columns to include in the output catalog and define
details of the output catalog and images. These parameters should be relatively self-explanatory and the
default values can be used with no editing if desired.

7. Diagnostic Plots. The code outputs a series of diagnostic plots The default values can be used with no

editing.

Source Extractor

EXTRACTOR CONFIG extractor.config # Name of source extractor configuration
file

EXTRACTOR PARAMS extractor.param # Name of source extractor parameters

file (will be generated automatically)

EXTRACTOR CATALOG extractor.cat

extractor
EXTRACTOR CMD sex
SKIP EXTRACTOR True

already been run (True/False)

High Resolution Catalog
HRES CATALOG
HRES ROTANGLE
West of North in Degrees
HRES PIXSCALE

Degrees per pixel

hres.cat
0.000000e+00

1.388889%e-05

High Resolution Catalog Format
MODEL TYPE 0

'point")
ID

RA

DEC

MAG

POINT MAG
RE

N

PA

BA

O J o0 U W N

Low Resolution Images

LRES IMAGE lres.fits

LRES RMS lres rms.fits
LRES PSF lres psf.fits
LRES MAGZERO 22.5000

image

Fitting Settings

Output catalog name for source

Location of source extractor executable
Skip running source extractor if it has

Filename of high resolution catalog
Roll angle for high resolution image,

Pixel scale for high resolution image,

Galaxy model type (either 'sersic' or

Unique id

Right Ascension

Declination

Magnitude for sersic models
Magnitude for point models
Effective radius (sersic only)
Sersic index (sersic only)

Position Angle (sersic only)

S oS W FE S S S 3

Axis Ratio (sersic only)

Filename of low resolution fits image
Filename of low resolution rms image

Filename of low resolution psf image

P

Magnitude zeropoint for low resolution

Whether or not to use integration to
Whether or not to attempt to speed up
The number of threads per block to

Maximum number of cpu threads to use
Maximum allowed (global) positional
(arcseconds)

Maximum allowed positional shift for a

Minimum magnitude of objects to fit

Maximum magnitude of objects to fit

USE INTEGRATION True

properly calculate hard-to-estimate sersic models
GPU False

calculations with a GPU

GPU NTHREADS 512

execute on the GPU

N_THREADS 1

(will never use more than the actual number of cpus)
GLOBAL MAX SHIFT 2.0000

offset between high and low resolution catalog
MAX SHIFT 0.2000

high resolution object during fit (arcseconds)
MIN MAG 16.0000

MAX MAG 22.0000

ALIGN MIN MAG 18.0000

Minimum magnitude of objects to include

in alignment

ALIGN MAX MAG 20.0000 # Maximum magnitude of objects to include
in alignment

N_ALIGN 25 # Maximum number of objects used in
alignment calculation

PAD LENGTH 25 # Padding region (in pixels) around model
to allow room for interpolation/convolution

Output Settings
SUBTRACT BACKGROUND False # Whether or not to subtract the
background from the final residuals image

IMAGE DIR cutouts/img # Directory for outputting image cutouts
(relative to working directory)

RMS DIR cutouts/rms # Directory for outputting rms cutouts
SEGMENTATION DIR cutouts/seg # Directory for outputting segemntation
cutouts

SEGMENTATION MASK DIR cutouts/mask # Directory for outputting segmentation
mask cutouts

OUTPUT ALL MODELS True # Whether or not to output an extension
for individual models in the fit.fits files

OUTPUT_CATALOG pygfit.cat # Filename for output catalog
OUTPUT_FORMAT ascii # 'fits' or 'ascii' - output type for

final catalog

Fields to output to final catalog

OUTPUT_COLUMNS lres id, hres id, nblend, nearest, nearest mag, model, ra,
dec, x, y, img x, img y, mag, mag image, mag initial, mag hres, mag brightest,

mag warning, flux, total flux, total mag, blend fraction, sky, re hres, re lres,

re arcsecs, n, pa, ba, chisq nu, chisq, nf, segmentation mag, segmentation residuals,
segmentation fraction, mask mag, mask residuals, mask fraction

Check Plots
Type of check plots to generate

CHECK_PLOTS isolated, alignment, alignment mag

Filenames for check plots

CHECK_PLOT FILES isolated.fits, alignment.fits, alignment mag.fits
7. Running PyGFit

The command
> pygfit.py --help

provides a list of possible command line flags:

pygfit.py [--help --simulate --plot sims --skip extractor --residuals file=file
--output catalog=file config file log file warn file]

The default values for the input configuration file and output log, and warning files are pygfit.config,

pygfit.log, and pygfit.warn, respectively For regular execution of PyGFit, it is sufficient to type
> pygfit.py

or
> pygfit.py config file

if the configuration file name differs from the default value. The simulation flag is required on the
command line to engage the simulation module.

8. Running PyGFit on Multiple Images

It is often the case that one will wish to run pygfit on data in multiple passbands starting with a single
high-resolution catalog. Doing so is straightforward with PyGFit. If the same high-resolution catalog is
used as input for each image, then the output catalogs will contain an identical set of objects. If the
catalogs are in ASCII format, then they will be line-matched. If they are in FITS format, then the script
such as merge pygfit.py (posted on the web page) can be used to append relevant columns into a single
master catalog.

9. PyGFIT Simulations to Quantify Uncertainties
PyGFit also comes with the ability to run simulations to quantify the photometric uncertainty as a

function of magnitude and other properties. Use of the --simulate flag:
> pygfit.py --simulate
instructs PyGFIT to generate N mock sources, insert them into M copies of the original image, recover

the best fit photometry, and generate a file results.cat containing the results. The key parameters are:

SIMULATED FRACTION 2.5 # Fraction of catalog to insert in individual image
NUMBER FRAMES 40 # Number of images into which to insert objects

It is advisable to keep the simulated fraction in any individual image near the default value to avoid
superpositions of simulated sources upon one another, while the number of frames can then be set to
yield the desired number of total simulated objects. By default the structure parameters and magnitudes
of the objects will be drawn directly from the PyGFit output catalog such that the simulated sample will
have similar properties to the real distribution. This simulated catalog can then be analyzed as desired.
At some point we may add simulation analysis scripts to the web page as well.

Important: When running simulations, you must edit the SExtractor configuration file to make
sure that the paths to the SExtractor .conv, .nnw, and .param files are all absolute. Simulations

are executed in subdirectories, and the code with crash if these paths are relative.

10. Questions and Comments

If you are using this code and have questions or suggestions, feel free to contact us via email
(anthonyhg@ufl.edu, leonidas@jpl.nasa.gov). Please also let us know if you make modifications or

additions to the code that you wish to contribute to the main distribution.

mailto:anthonyhg@ufl.edu
mailto:leonidas@jpl.nasa.gov

